El estimado bootstrap ideal del sesgo se obtiene sustituyendo F por su distribución empírica Fˆ está dado por

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El estimado bootstrap ideal del sesgo se obtiene sustituyendo F por su distribución empírica Fˆ está dado por"

Transcripción

1 Estimació del sesgo por bootstrappig El Sesgo de u estimador θˆ es otra medida de precisió. Sea x=(x,x, X ) ua muestra aleatoria de ua variable aleatoria que tiee distribució F y sea θ=t(f) u parámetro que sea estimar. Se defie el sesgo del estimador θˆ =s(x) por Sesgo F (θˆ,θ)= E F (θˆ )-θ=e F [s(x) ]-t(f) Ejemplo: Dada ua distribució F, θˆ = x es u estimador isesgado de θ=µ. O sea Sesgo F (θˆ,θ)=0 Ejemplo: Si F es ua distribució uiforme e (0,θ) y ˆ θ = max( X,..., X ) etoces Sesgo F (θˆ,θ)= E F (θˆ )-θ= θ θ = θ + + El estimado bootstrap ideal del sesgo se obtiee sustituyedo F por su distribució empírica Fˆ está dado por Sesgo Fˆ ( ˆ, θ θ ) = E ˆ F [ s( x*)] t( Fˆ dode x* es ua muestra bootstrap de x. Aquí el valor esperado se aproxima usado todas las muestras co reemplazo que se puede extraer de la muestra origial. E la practica el estimado bootstrap ideal del sesgo es aproximado tomado B muestras bootstrap de la muestra origial x. Así el estimado bootstrap de θ basado e B repeticioes está dado por Sesgo ( ˆ, ) ˆ * ( ˆ B θ θ = θ t F ) dode ˆ θ * es el promedio de las estimacioes de θˆ =s(x) e cada muestra bootstrap. Ejemplo. Dada la siguiete muestra estimar por bootstrap el sesgo del estimador del máximo usado 000 muestras bootstrap. sesgomaxboot=fuctio(muestra,b){ obs=legth(muestra) bootsample=matrix(0,b,obs) for(b i :B) { )

2 bootsample[b,]=sample(muestra,obs,replace=t) bootmax=apply(bootsample,,max) sesgo=mea(bootmax)-max(muestra) sesgo x=c(, 7, 9, 40, 4, 9,, 4) > sesgomaxboot(x,000) [] El teórico es -40/9= Ejemplo. Estimador de razó. Los siguietes datos represeta la població e miles de 0 ciudades de US segú los cesos de 90(x) y 90(y). i X Y La població total e 90 se puede estimar multiplicado la població total e 90 por el estimador θ=e(y)/e(x), el cual es llamado u estimador de razó. Dada u par de variables aleatorias X y Y distribuidas cojutamete se desea estimar el EY ( ) parámetro θ =, el estimador muestral será ˆ y θ =. EX ( ) x La siguiete fució e R halla el estimador por bootstrappig del error estádar y sesgo de u estimador de razó usado B muestras bootstrap. bootratio=fuctio(data,b) {# esta fucio halla el error estadar y el sesgo estimado #por bootstrappig de ua razo obs=dim(data)[] thetaest=mea(data[,])/mea(data[,]) bootrat=rep(0,b) for (b i :B) {bootidex=sample(:obs,obs,replace=t) bootrat[b]=mea(data[bootidex,])/mea(data[bootidex,]) seboot=sd(bootrat) cat( El error estadar estimado por bootstrappig de la razo es",seboot, \ ) biasboot=mea(bootrat)-thetaest cat( El sesgo estimado por bootstrappig de la razo es",biasboot, \ )

3 Aplicado la fució a los datos co B=000 y B=0000 muestras bootstrap se obtiee > brazo=bootratio(pobla,000) El error estadar estimado por bootstrappig de la razo es El sesgo estimado por bootstrappig de la razo es La razó del sesgo co respecto al error estádar es >.0460/.64 [] brazo=bootratio(pobla,0000) El error estadar estimado por bootstrappig de la razo es El sesgo estimado por bootstrappig de la razo es La razó del sesgo co respecto al error estádar es >.076/.9 [] 0.76 Usualmete el úmero de muestra bootstrap ecesarias para estimar el sesgo es mayor que el úmero de muestras requeridas para estimar el error estádar, debido es la mayor variablidad presete e la estimació del sesgo como lo muestra los siguietes resultados para el ejemplo aterior. B CV(se B ) CV(Sesgo B ) Ejemplo: Estimació por Boostrappig del error estádar y sesgo del coeficiete de asimetría (skewess) Sea X ua variable aleatoria co media µ etoces la medida de asimetría de su distribució se defie por E( X µ ) γ = [ E( X µ ) ] /. Usado el método de estimació por mometos para el segudo y tercer mometo cetral se tiee que la asimetría puede ser estimada por

4 skew = = [ ] / ( xi ] / Hay muchas otras variates de la formula. Recordado que σ estimado de σ,produce el siguiete estimado skew = s [ = E ( X µ) y que s es u Esta forma de estimado es el que usa la fució skewess de la librería fbasics de R. La siguiete fució e R calcula el skewess de ua variable aleatoria X. skewess=fuctio (x) {a=sqrt(legth(x))*sum((x-mea(x))^) b=(sum((x-mea(x))^))^.5 skew=a/b La siguiete fució de R calcula la estimació por boostrappig del error estádar y del sesgo del skewess de ua variable aleatoria X. bootskew=fuctio(data,b) {# esta fucio halla el error estadar y el sesgo estimado #por bootstrappig de ua razo obs=legth(data) thetaest=skewess(data) bootskew=rep(0,b) for (b i :B) {bootsample=sample(data,obs,replace=t) bootskew[b]=skewess(bootsample) seboot=sd(bootskew) cat("el error estadar estimado por bootstrappig del skewess es",seboot) biasboot=mea(bootskew)-thetaest cat("\el sesgo estimado por bootstrappig del skewess es",biasboot,"\") Ua aplicació a las dos variables del cojuto brai produce los siguietes resultados bootskew(brai[,],00) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es

5 > bootskew(brai[,],500) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es > bootskew(brai[,],000) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es > bootskew(brai[,],00) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es > bootskew(brai[,],500) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es > bootskew(brai[,],000) El error estadar estimado por bootstrappig del skewess es El sesgo estimado por bootstrappig del skewess es > Solamete e el caso de estimadores plug-i existe ua mejor maera de estimar el sesgo por bootstrappig usado u cocepto llamado de vector de remuestreo pero o será discutida aquí (ver Efro y Tibshirai, pags 0-). Estimado bootstrap de u estimador corregido por sesgo La razó pricipal de estimar el sesgo es corregir el estimador iicial θˆ haciédolo meos sesgado. Luego el estimador de θ corregido por sesgo será θ = ˆ θ SesgoB ( ˆ, θ θ ) O equivaletemete, θ = ˆ θ ( ˆ θ * ˆ) θ = ˆ θ ˆ θ * E el ejemplo de la razó de poblacioes se tiee que ˆ θ =. 50 y el estimado del sesgo basado e 000 muestras bootstrap es Luego el estimador corregido por sesgo será θ = =.474

Propiedades de la funcion de distribucion empirica. Propiedades de la Función de distribución Empírica:

Propiedades de la funcion de distribucion empirica. Propiedades de la Función de distribución Empírica: Propiedades de la fucio de distribucio empirica Propiedades de la Fució de distribució Empírica: a. Fˆ es creciete de 0 hasta 1. b. Fˆ es ua fució escaloada co saltos e los distitos valores de X 1, X,...,

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma MAS obteidas de ua població N, so por aturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño, tomadas de la misma població N, tega la misma media muestral o que sea completamete

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 7: HERRAMIENTAS INFERENCIALES. DISTRIBUCIONES ASOCIADAS AL Uiversidad MUESTREO de Oviedo. Facultad de Ecoomía y Empresa. Grado e ADE. 7.1.- Distribucioes Métodos

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua media (Cap. 21 del libro) 1 Tema 11. Estimació de ua media Itroducció 1. Distribució de la media e el muestreo 2. La media

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

Estimación por Intervalos

Estimación por Intervalos Estimació por Itervalos Propósito Ya se discutiero los estimadores putuales: x y p Ahora se dará, e ambos casos, ua estimació de itervalo, la cual iforma sobre la precisió de la estimació. Esta estimació

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

Problemas de cálculo

Problemas de cálculo Problemas Estimació estadística Vicete Mazao-Arrodo, 2012,2013 Problemas de cálculo Ejercicio 1 resuelto Observamos e mometos al azar e ua cocurrida calle de la ciudad. Nos iteresa registrar cuátas persoas

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA FACULTAD DE INGENIERÍA INFERENCIA ESTADÍSTICA Iree Patricia Valdez y Alfaro Estimació de parámetros ireev@servidor.uam.mx Ua clasificació de estadística Descriptiva Calculo de medidas descriptivas Costrucció

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

TAMAÑO DE MUESTRA. 5.1 Coeficiente de homogeneidad al interior de las escuelas

TAMAÑO DE MUESTRA. 5.1 Coeficiente de homogeneidad al interior de las escuelas TAMAÑO DE MUETRA Ua de las etapas del diseño muestral es el cálculo del tamaño de la muestra (Cocra, 977, p. 7-88; Médez, 004, p. 45-47; y aro, 999, p. 39-4), ésta se lleva a cabo cosiderado el objetivo

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales 10/08/007 Diseño Estadístico y Herramietas para la Calidad Distribucioes Muestrales Epositor: Dr. Jua José Flores Romero juaf@umich.m http://lsc.fie.umich.m/~jua M. e Calidad Total y Competitividad Distribucioes

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. Instituto de Ciencias Matemáticas

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. Instituto de Ciencias Matemáticas ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Istituto de Ciecias Matemáticas Igeiería e Estadística Iformática Estimadores Jackife para distitos tipos de població TESIS DE GRADO Previa a la obteció del Título

Más detalles

Intervalos de confianza basado en bootstrap

Intervalos de confianza basado en bootstrap Itervalos de cofiaza basado e bootstrap Cosideremos ua variable aleatoria X que tiee ua fució de distribució F θ (x)=f(x-θ), dode θ es llamado u parámetro de localizació. Ejemplos de parámetros de localizació

Más detalles

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL.

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. U itervalo de cofiaza, para u parámetro poblacioal θ, a u ivel de cofiaza (1 ) 100 %, o es más que u itervalo (L i, L s

Más detalles

Introducción. Ejemplos:

Introducción. Ejemplos: Itroducció Las técicas del muestreo se utiliza frecuetemete cuado se quiere coocer cuáles so las características geerales de ua població. Ejemplos: Aspectos demográficos y sociales: Prevalecia de la drogadicció

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

Análisis estadístico de datos simulados Estimadores

Análisis estadístico de datos simulados Estimadores Aálisis estadístico de datos simulados Estimadores Patricia Kisbye FaMAF 11 de mayo, 2010 Aálisis estadístico Iferecia estadística: Elegir ua distribució e base a los datos observados. Estimar los parámetros

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Introducción. Introducción (2) Hasta ahora: estadística descriptiva (para describir datos)

Curso de Estadística Aplicada a las Ciencias Sociales. Introducción. Introducción (2) Hasta ahora: estadística descriptiva (para describir datos) Curso de Estadística Aplicada a las Ciecias Sociales Tema 10. Estimació de ua proporció Cap. 0 del maual Tema 10. Estimació de ua proporció Itroducció 1. Distribució e el muestreo de ua proporció. Estimadores

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA CONVOCATORIA DE MAYO (011) EJERCICIO 1 El director de publicacioes de ua editorial trata de decidir si debe publicar u uevo texto de estadística. Los ateriores libros

Más detalles

Estimación por intervalos

Estimación por intervalos Estimació por itervalos do C. 018 Mg. tella Figueroa Clase Nº 11 Para la media poblacioal Coociedo Partimos de ua població ormal X y de la distribució muestral de la media X ~ N, X ~ N, P( z Z z ) 1 /

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Sobre los intervalos de confianza y de predicción

Sobre los intervalos de confianza y de predicción Sobre los itervalos de cofiaza y de predicció Itervalos de cofiaza Javier Satibáñez 28 de febrero de 2018 Se costruye itervalos de cofiaza para parámetros. Sea X = X 1,..., X } ua muestra aleatoria de

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

DISTRIBUCIONES EN EL MUESTREO

DISTRIBUCIONES EN EL MUESTREO 7/9/08 DISTRIBUCIONES EN EL MUESTREO Uidad 4 08 Las estadísticas pesadas como variables aleatorias Ejemplo: u experimeto E cosiste e elegir =5 alícuotas de agua del río y medir la cocetració de arséico:

Más detalles

θˆ = h(x 1,X 2,...,X n ) θˆ es un estimador puntual de θ

θˆ = h(x 1,X 2,...,X n ) θˆ es un estimador puntual de θ Iferecia Estadística 95 Capitulo VIII INFERENCIA ETADITICA Es ua rama de de la Estadística que se ocupa de los procedimietos que os permite aalizar y etraer coclusioes de ua població a partir de los datos

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

TRANSFORMADA RAPIDA DE FOURIER (FFT)

TRANSFORMADA RAPIDA DE FOURIER (FFT) Capítulo 6 TRASORADA RAPIDA DE OURIER (T) Los temas a tratar e el presete capítulo so: 6. Algoritmo T 6. T Iversa. 6.3 Implemetació Televisió Digital 6- La implemetació de la ec. (4.5) ivolucra u úmero

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

1. Distribución Normal.

1. Distribución Normal. DEPARTAMENTO DE MATEMÁTICAS UNIDAD 5. Estadística IES Galileo Galilei RESUMEN 1. Distribució Normal. 1.1. Cálculo de probabilidades a) Para ua distribució estádar N(0,1) usamos directamete la tabla: Ejemplos:

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

1. Muestreo Aleatorio Simple

1. Muestreo Aleatorio Simple UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIA INDUSTRIAL Estadística III-Material 2-2012 Revisió y Cambios y Ampliació: Ig. José Alejadro Marí Fuete Primaria: Ig. César Augusto Zapata Urquijo

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Elementos de Teoria Asintotica

Elementos de Teoria Asintotica (wsosa@udesa.edu.ar) Uiversidad de Sa Adres El modelo lieal e otacio observacioal y i = x iβ + u i, i = 1, 2,..., x i = [ Mi Z i ] [, x i x Mi i = Z i ] [ Mi Z i ] = M 2 i Z i M i M i Z i Z 2 i M 2 x i

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Introducción a la Inferencia Estadística. Material Preparado por Olga Susana Filippini y Hugo Delfino

Introducción a la Inferencia Estadística. Material Preparado por Olga Susana Filippini y Hugo Delfino Itroducció a la Iferecia Estadística Temario Diseño Muestral Teorema Cetral del Límite Iferecia estadística Estimació putual y por itervalos Test de hipótesis. DISEÑO MUESTRAL Porque utilizar muestras

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

METODOLOGÍA MUESTRAL EFECTIVA ENCUESTA DE GANADO CAPRINO AÑO 2015 INSTITUTO NACIONAL DE ESTADÍSTICAS

METODOLOGÍA MUESTRAL EFECTIVA ENCUESTA DE GANADO CAPRINO AÑO 2015 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA MUESTRAL ECTIVA ECUESTA DE GAADO CAPRIO AÑO 05 ISTITUTO ACIOAL DE ESTADÍSTICAS Diciembre / 05 Metodología Muestral Efectiva Ecuesta de Gaado Caprio Año 05 Secció de Estadísticas Ecoómicas.

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES.

PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. PROBLEMA DEL USO DE FERTILIZANTE EN GRANJAS DE PRODUCCIÓN DE TOMATES. E el siguiete ejercicio se tratará de expoer, de forma didáctica, el proceso de solució de u problema de regresió simple. Problema:

Más detalles

Notas de clase 3 Estimación de parámetros.

Notas de clase 3 Estimación de parámetros. Notas de clase 3 Estimació de parámetros. Willie Heradez 05-I E este capítulo se obtedrá relacioes etre la teoría y la realidad observable. Se buscará coclusioes que se puede obteer acerca de ua poblacióa

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

Universidad de Granada

Universidad de Granada Uiversidad de Graada Departameto de Estadística e Ivestigació Operativa Bootstrap e poblacioes fiitas Máster Oficial e Estadística Aplicada Graada, julio de 2014 Ídice geeral 1. EL MÉTODO BOOTSTRAP 4 1.1.

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados. Sexo

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados. Sexo EAMEN MODELO B ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO FEBRERO 018 Código asigatura: 6011037 EAMEN TIO TET MODELO B DURACION: HORA Material: Addeda (Formulario y Tablas) y calculadora (cualquier modelo) Calificació

Más detalles

Sobre los intervalos de confianza y de predicción Javier Santibáñez 7 de abril de 2017

Sobre los intervalos de confianza y de predicción Javier Santibáñez 7 de abril de 2017 Sobre los itervalos de cofiaza y de predicció Javier Satibáñez 7 de abril de 2017 Itervalos de cofiaza Se costruye itervalos de cofiaza para los parámetros poblacioales. Supogamos que teemos ua muestra

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

Diseño muestral de la Encuesta de Métodos de Producción Agrícola 2009

Diseño muestral de la Encuesta de Métodos de Producción Agrícola 2009 Diseño muestral de la Ecuesta de Métodos de Producció Agrícola 009 El diseño muestral de la Ecuesta de Métodos de Producció Agrícola 009 correspode a u tipo de muestreo aleatorio estratificado. E cada

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar "n", de modo que:

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar n, de modo que: Ejercicios Itervalos de Cofiaza. Se toma ua muestra aleatoria de observacioes y se costruye u itervalo de cofiaza del 95% para la media poblacioal, co variaza coocida. El itervalo de cofiaza resultó co

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles